Friday, August 22, 2008
Special thanks to the Microsoft Corporation for their contribution to our site. The following information came from Microsoft Encarta.
I INTRODUCTION
Newton, Sir Isaac (1642-1727), mathematician and physicist, one of the foremost scientific intellects of all time. Born at Woolsthorpe, near Grantham in Lincolnshire, where he attended school, he entered Cambridge University in 1661; he was elected a Fellow of Trinity College in 1667, and Lucasian Professor of Mathematics in 1669. He remained at the university, lecturing in most years, until 1696. Of these Cambridge years, in which Newton was at the height of his creative power, he singled out 1665-1666 (spent largely in Lincolnshire because of plague in Cambridge) as "the prime of my age for invention". During two to three years of intense mental effort he prepared Philosophiae Naturalis Principia Mathematica (Mathematical Principles of Natural Philosophy) commonly known as the Principia, although this was not published until 1687.
As a firm opponent of the attempt by King James II to make the universities into Catholic institutions, Newton was elected Member of Parliament for the University of Cambridge to the Convention Parliament of 1689, and sat again in 1701-1702. Meanwhile, in 1696 he had moved to London as Warden of the Royal Mint. He became Master of the Mint in 1699, an office he retained to his death. He was elected a Fellow of the Royal Society of London in 1671, and in 1703 he became President, being annually re-elected for the rest of his life. His major work, Opticks, appeared the next year; he was knighted in Cambridge in 1705.
As Newtonian science became increasingly accepted on the Continent, and especially after a general peace was restored in 1714, following the War of the Spanish Succession, Newton became the most highly esteemed natural philosopher in Europe. His last decades were passed in revising his major works, polishing his studies of ancient history, and defending himself against critics, as well as carrying out his official duties. Newton was modest, diffident, and a man of simple tastes. He was angered by criticism or opposition, and harboured resentment; he was harsh towards enemies but generous to friends. In government, and at the Royal Society, he proved an able administrator. He never married and lived modestly, but was buried with great pomp in Westminster Abbey.
Newton has been regarded for almost 300 years as the founding examplar of modern physical science, his achievements in experimental investigation being as innovative as those in mathematical research. With equal, if not greater, energy and originality he also plunged into chemistry, the early history of Western civilization, and theology; among his special studies was an investigation of the form and dimensions, as described in the Bible, of Solomon's Temple in Jerusalem.
II OPTICS
In 1664, while still a student, Newton read recent work on optics and light by the English physicists Robert Boyle and Robert Hooke; he also studied both the mathematics and the physics of the French philosopher and scientist René Descartes. He investigated the refraction of light by a glass prism; developing over a few years a series of increasingly elaborate, refined, and exact experiments, Newton discovered measurable, mathematical patterns in the phenomenon of colour. He found white light to be a mixture of infinitely varied coloured rays (manifest in the rainbow and the spectrum), each ray definable by the angle through which it is refracted on entering or leaving a given transparent medium. He correlated this notion with his study of the interference colours of thin films (for example, of oil on water, or soap bubbles), using a simple technique of extreme acuity to measure the thickness of such films. He held that light consisted of streams of minute particles. From his experiments he could infer the magnitudes of the transparent "corpuscles" forming the surfaces of bodies, which, according to their dimensions, so interacted with white light as to reflect, selectively, the different observed colours of those surfaces.
The roots of these unconventional ideas were with Newton by about 1668; when first expressed (tersely and partially) in public in 1672 and 1675, they provoked hostile criticism, mainly because colours were thought to be modified forms of homogeneous white light. Doubts, and Newton's rejoinders, were printed in the learned journals. Notably, the scepticism of Christiaan Huygens and the failure of the French physicist Edmé Mariotte to duplicate Newton's refraction experiments in 1681 set scientists on the Continent against him for a generation. The publication of Opticks, largely written by 1692, was delayed by Newton until the critics were dead. The book was still imperfect: the colours of diffraction defeated Newton. Nevertheless, Opticks established itself, from about 1715, as a model of the interweaving of theory with quantitative experimentation.
III MATHEMATICS
In mathematics too, early brilliance appeared in Newton's student notes. He may have learnt geometry at school, though he always spoke of himself as self-taught; certainly he advanced through studying the writings of his compatriots William Oughtred and John Wallis, and of Descartes and the Dutch school. Newton made contributions to all branches of mathematics then studied, but is especially famous for his solutions to the contemporary problems in analytical geometry of drawing tangents to curves (differentiation) and defining areas bounded by curves (integration). Not only did Newton discover that these problems were inverse to each other, but he discovered general methods of resolving problems of curvature, embraced in his "method of fluxions" and "inverse method of fluxions", respectively equivalent to Leibniz's later differential and integral calculus. Newton used the term "fluxion" (from Latin meaning "flow") because he imagined a quantity "flowing" from one magnitude to another. Fluxions were expressed algebraically, as Leibniz's differentials were, but Newton made extensive use also (especially in the Principia) of analogous geometrical arguments. Late in life, Newton expressed regret for the algebraic style of recent mathematical progress, preferring the geometrical method of the Classical Greeks, which he regarded as clearer and more rigorous.
Newton's work on pure mathematics was virtually hidden from all but his correspondents until 1704, when he published, with Opticks, a tract on the quadrature of curves (integration) and another on the classification of the cubic curves. His Cambridge lectures, delivered from about 1673 to 1683, were published in 1707.
The Calculus Priority Dispute
Newton had the essence of the methods of fluxions by 1666. The first to become known, privately, to other mathematicians, in 1668, was his method of integration by infinite series. In Paris in 1675 Gottfried Wilhelm Leibniz independently evolved the first ideas of his differential calculus, outlined to Newton in 1677. Newton had already described some of his mathematical discoveries to Leibniz, not including his method of fluxions. In 1684 Leibniz published his first paper on calculus; a small group of mathematicians took up his ideas.
In the 1690s Newton's friends proclaimed the priority of Newton's methods of fluxions. Supporters of Leibniz asserted that he had communicated the differential method to Newton, although Leibniz had claimed no such thing. Newtonians then asserted, rightly, that Leibniz had seen papers of Newton's during a London visit in 1676; in reality, Leibniz had taken no notice of material on fluxions. A violent dispute sprang up, part public, part private, extended by Leibniz to attacks on Newton's theory of gravitation and his ideas about God and creation; it was not ended even by Leibniz's death in 1716. The dispute delayed the reception of Newtonian science on the Continent, and dissuaded British mathematicians from sharing the researches of Continental colleagues for a century.
IV MECHANICS AND GRAVITATION
According to the well-known story, it was on seeing an apple fall in his orchard at some time during 1665 or 1666 that Newton conceived that the same force governed the motion of the Moon and the apple. He calculated the force needed to hold the Moon in its orbit, as compared with the force pulling an object to the ground. He also calculated the centripetal force needed to hold a stone in a sling, and the relation between the length of a pendulum and the time of its swing. These early explorations were not soon exploited by Newton, though he studied astronomy and the problems of planetary motion.
Correspondence with Hooke (1679-1680) redirected Newton to the problem of the path of a body subjected to a centrally directed force that varies as the inverse square of the distance; he determined it to be an ellipse, so informing Edmond Halley in August 1684. Halley's interest led Newton to demonstrate the relationship afresh, to compose a brief tract on mechanics, and finally to write the Principia.
Book I of the Principia states the foundations of the science of mechanics, developing upon them the mathematics of orbital motion round centres of force. Newton identified gravitation as the fundamental force controlling the motions of the celestial bodies. He never found its cause. To contemporaries who found the idea of attractions across empty space unintelligible, he conceded that they might prove to be caused by the impacts of unseen particles.
Book II inaugurates the theory of fluids: Newton solves problems of fluids in movement and of motion through fluids. From the density of air he calculated the speed of sound waves.
Book III shows the law of gravitation at work in the universe: Newton demonstrates it from the revolutions of the six known planets, including the Earth, and their satellites. However, he could never quite perfect the difficult theory of the Moon's motion. Comets were shown to obey the same law; in later editions, Newton added conjectures on the possibility of their return. He calculated the relative masses of heavenly bodies from their gravitational forces, and the oblateness of Earth and Jupiter, already observed. He explained tidal ebb and flow and the precession of the equinoxes from the forces exerted by the Sun and Moon. All this was done by exact computation.
Newton's work in mechanics was accepted at once in Britain, and universally after half a century. Since then it has been ranked among humanity's greatest achievements in abstract thought. It was extended and perfected by others, notably Pierre Simon de Laplace, without changing its basis and it survived into the late 19th century before it began to show signs of failing. See Quantum Theory; Relativity.
V ALCHEMY AND CHEMISTRY
Newton left a mass of manuscripts on the subjects of alchemy and chemistry, then closely related topics. Most of these were extracts from books, bibliographies, dictionaries, and so on, but a few are original. He began intensive experimentation in 1669, continuing till he left Cambridge, seeking to unravel the meaning that he hoped was hidden in alchemical obscurity and mysticism. He sought understanding of the nature and structure of all matter, formed from the "solid, massy, hard, impenetrable, movable particles" that he believed God had created. Most importantly in the "Queries" appended to "Opticks" and in the essay "On the Nature of Acids" (1710), Newton published an incomplete theory of chemical force, concealing his exploration of the alchemists, which became known a century after his death.
VI HISTORICAL AND CHRONOLOGICAL STUDIES
Newton owned more books on humanistic learning than on mathematics and science; all his life he studied them deeply. His unpublished "classical scholia"—explanatory notes intended for use in a future edition of the Principia—reveal his knowledge of pre-Socratic philosophy; he read the Fathers of the Church even more deeply. Newton sought to reconcile Greek mythology and record with the Bible, considered the prime authority on the early history of mankind. In his work on chronology he undertook to make Jewish and pagan dates compatible, and to fix them absolutely from an astronomical argument about the earliest constellation figures devised by the Greeks. He put the fall of Troy at 904 BC, about 500 years later than other scholars; this was not well received.
VII RELIGIOUS CONVICTIONS AND PERSONALITY
Newton also wrote on Judaeo-Christian prophecy, whose decipherment was essential, he thought, to the understanding of God. His book on the subject, which was reprinted well into the Victorian Age, represented lifelong study. Its message was that Christianity went astray in the 4th century AD, when the first Council of Nicaea propounded erroneous doctrines of the nature of Christ. The full extent of Newton's unorthodoxy was recognized only in the present century: but although a critic of accepted Trinitarian dogmas and the Council of Nicaea, he possessed a deep religious sense, venerated the Bible and accepted its account of creation. In late editions of his scientific works he expressed a strong sense of God's providential role in nature.
VIII PUBLICATIONS
Newton published an edition of Geographia generalis by the German geographer Varenius in 1672. His own letters on optics appeared in print from 1672 to 1676. Then he published nothing until the Principia (published in Latin in 1687; revised in 1713 and 1726; and translated into English in 1729). This was followed by Opticks in 1704; a revised edition in Latin appeared in 1706. Posthumously published writings include The Chronology of Ancient Kingdoms Amended (1728), The System of the World (1728), the first draft of Book III of the Principia, and Observations upon the Prophecies of Daniel and the Apocalypse of St John (1733).
Contributed By:
Alfred Rupert Hall
*************************************************************************************
Sir Isaac Newton, President of the Royal Society, (4 January 1643 - 31 March 1727) [OS: 25 December 1642 20 March 1727] was an English mathematician, physicist, astronomer, alchemist, and natural philosopher who is generally regarded as one of the greatest scientists and mathematicians in history.
Newton wrote the Philosophiae Naturalis Principia Mathematica, in which he described universal gravitation and the three laws of motion, laying the groundwork for classical mechanics. By deriving Kepler's laws of planetary motion from this system, he was the first to show that the motion of objects on Earth and of celestial bodies are governed by the same set of natural laws. The unifying and deterministic power of his laws was integral to the scientific revolution and the advancement of heliocentrism.
Among other scientific discoveries, Newton realised that the spectrum of colours observed when white light passes through a prism is inherent in the white light and not added by the prism (as Roger Bacon had claimed in the thirteenth century), and notably argued that light is composed of particles.
He also developed a law of cooling, describing the rate of cooling of objects when exposed to air.
He enunciated the principles of conservation of momentum and angular momentum.
Finally, he studied the speed of sound in air, and voiced a theory of the origin of stars.
Despite this renown in mainstream science, Newton actually spent more time working on alchemy than physics, writing considerably more papers on the former than the latter.
Newton played a major role in the development of calculus, sharing credit with Gottfried Leibniz. He also made contributions to other areas of mathematics, for example the generalised binomial theorem. The mathematician and mathematical physicist Joseph Louis Lagrange (17361813), said that "Newton was the greatest genius that ever existed and the most fortunate, for we cannot find more than once a system of the world to establish."
Early Years
Born in the hamlet of Woolsthorpe, Newton was the only son of a local yeoman, also Isaac Newton, who had died three months before, and of Hannah Ayscough. That same year, at Arcetri near Florence, Galileo Galilei had died; Newton would eventually pick up his idea of a mathematical science of motion and bring his work to full fruition. A tiny and weak baby, Newton was not expected to survive his first day of life, much less 84 years.
Education
From the age of about twelve until he was seventeen, Newton was educated at The King's School in Grantham (where his signature can still be seen upon a library window sill). He was removed from school and by Oct 1659 he was to be found at Woolsthorpe, where his mother attempted to make a farmer of him. He was, by later reports of his contemporaries, thoroughly unhappy with the work. It appears to be Henry Stokes, master at the King's School, who persuaded his mother to send him back to school so that he might complete his education.
In June 1661 he matriculated to Trinity College, Cambridge. At that time, the college's teachings were based on those of Aristotle, but Newton preferred to read the more advanced ideas of modern philosophers such as Descartes and astronomers such as Galileo, Copernicus and Kepler.
When Newton arrived in Cambridge in 1661, the movement now known as the scientific revolution was well advanced, and many of the works basic to modern science had appeared. Astronomers from Copernicus to Kepler had elaborated the heliocentric system of the universe. Galileo had proposed the foundations of a new mechanics built on the principle of inertia. Led by Descartes, philosophers had begun to formulate a new conception of nature as an intricate, impersonal, and inert machine. Yet as far as the universities of Europe, including Cambridge, were concerned, all this might well have never happened. They continued to be the strongholds of outmoded Aristotelianism, which rested on a geocentric view of the universe and dealt with nature in qualitative rather than quantitative terms.
Like thousands of other undergraduates, Newton began his higher education by immersing himself in Aristotle's work. Even though the new philosophy was not in the curriculum, it was in the air. Some time during his undergraduate career, Newton discovered the works of the French natural philosopher René Descartes and the other mechanical philosophers, who, in contrast to Aristotle, viewed physical reality as composed entirely of particles of matter in motion and who held that all the phenomena of nature result from their mechanical interaction.
A new set of notes, which he entitled Quaestiones Quaedam Philosophicae (Certain Philosophical Questions), begun sometime in 1664, usurped the unused pages of a notebook intended for traditional scholastic exercises; under the title he entered the slogan "Amicus Plato amicus Aristoteles magis amica veritas" ("Plato is my friend, Aristotle is my friend, but my best friend is truth").
Newton's scientific career had begun.
The "Quaestiones" reveal that Newton had discovered the new conception of nature that provided the framework of the scientific revolution. He had thoroughly mastered the works of Descartes and had also discovered that the French philosopher Pierre Gassendi had revived atomism, an alternative mechanical system to explain nature. The "Quaestiones" also reveal that Newton already was inclined to find the latter a more attractive philosophy than Cartesian natural philosophy, which rejected the existence of ultimate indivisible particles.
The works of the 17th-century chemist Robert Boyle provided the foundation for Newton's considerable work in chemistry. Significantly, he had read Henry More, the Cambridge Platonist, and was thereby introduced to another intellectual world, the magical Hermetic tradition, which sought to explain natural phenomena in terms of alchemical and magical concepts. The two traditions of natural philosophy, the mechanical and the Hermetic, antithetical though they appear, continued to influence his thought and in their tension supplied the fundamental theme of his scientific career.
Although he did not record it in the "Quaestiones," Newton had also begun his mathematical studies. He again started with Descartes, from whose La Géometrie he branched out into the other literature of modern analysis with its application of algebraic techniques to problems of geometry. He then reached back for the support of classical geometry. Within little more than a year, he had mastered the literature; and, pursuing his own line of analysis, he began to move into new territory. He discovered the binomial theorem, and he developed the calculus, a more powerful form of analysis that employs infinitesimal considerations in finding the slopes of curves and areas under curves.
Work during the plague years
When Newton received the bachelor's degree in April 1665, the most remarkable undergraduate career in the history of university education had passed unrecognized. On his own, without formal guidance, he had sought out the new philosophy and the new mathematics and made them his own, but he had confined the progress of his studies to his notebooks.
Then, in 1665, the plague closed the university, and for most of the following two years he was forced to stay at his home, contemplating at leisure what he had learned. During the plague years Newton laid the foundations of the Calculus and extended an earlier insight into an essay, "Of Colors," which contains most of the ideas elaborated in his Opticks.
It was during this time that he examined the elements of circular motion and, applying his analysis to the Moon and the planets, derived the inverse square relation that the radially directed force acting on a planet decreases with the square of its distance from the Sun--which was later crucial to the law of universal gravitation. The world heard nothing of these discoveries. He chose not to share concepts he had discovered unless he was asked.
Mathematical Research
Newton became a fellow of Trinity College in 1669. In the same year he circulated his findings in De Analysi per Aequationes Numeri Terminorum Infinitas (On Analysis by Infinite Series), and later in De methodis serierum et fluxionum (On the Methods of Series and Fluxions), whose title gave rise to the "method of fluxions". Despite the fact that only a handful of savants were even aware of Newton's existence, he had arrived at the point where he had become the leading mathematician in Europe.
Newton and Gottfried Leibniz developed the calculus independently, using different notations. Although Newton had worked out his method years before Leibniz, he published almost nothing about it until 1693, and did not give a full account until 1704. Meanwhile, Leibniz began publishing a full account of his methods in 1684. Moreover, Leibniz's notation and "differential Method" were universally adopted on the Continent, and after 1820 or so, in the British Empire.
Newton claimed that he had been reluctant to publish his calculus because he feared being mocked for it. Starting in 1699, other members of the Royal Society accused Leibniz of plagiarism, and the dispute broke out in full force in 1711. Thus began the bitter calculus priority dispute with Leibniz, which marred the lives of both Newton and Leibniz until the latter's death in 1716. This dispute created a divide between British and Continental mathematicians that may have retarded the progress of British mathematics by at least a century.
Newton is generally credited with the generalized binomial theorem, valid for any exponent. He discovered Newton's identities, Newton's method, classified cubic plane curves (polynomials of degree three in two variables), made substantial contributions to the theory of finite differences, and was the first to use fractional indices and to employ coordinate geometry to derive solutions to Diophantine equations.
He approximated partial sums of the harmonic series by logarithms (a precursor to Euler's summation formula), and was the first to use power series with confidence and to revert power series. He also discovered a new formula for pi.He was elected Lucasian professor of mathematics in 1669.
In that day, any fellow of Cambridge or Oxford had to be an ordained Anglican priest. However, the terms of the Lucasian professorship required that the holder not be active in the church (presumably so as to have more time for science). Newton argued that this should exempt him from the ordination requirement, and Charles II, whose permission was needed, accepted this argument. Thus a conflict between Newton's religious views and Anglican orthodoxy was averted.
Optics
Replica of Newton's 6-inch reflecting telescope of 1672 for the Royal Society
From 1670 to 1672 he lectured on optics. During this period he investigated the refraction of light, demonstrating that a prism could decompose white light into a spectrum of colours, and that a lens and a second prism could recompose the multicoloured spectrum into white light. He also showed that the coloured light does not change its properties, by separating out a coloured beam and shining it on various objects.
Newton noted that regardless of whether it was reflected or scattered or transmitted, it stayed the same color. Thus the colors we observe are the result of how objects interact with the incident already-colored light, not the result of objects generating the color. Many of his findings in this field were criticized by later theorists, the most well-known being Johann Wolfgang von Goethe, who postulated his own color theories.
From this work he concluded that any refracting telescope would suffer from the dispersion of light into colours, and invented a reflecting telescope (today known as a Newtonian telescope) to bypass that problem.
By grinding his own mirrors, using Newton's rings to judge the quality of the optics for his telescopes, he was able to produce a superior instrument to the refracting telescope, due primarily to the wider diameter of the mirror. (Only later, as glasses with a variety of refractive properties became available, did achromatic lenses for refractors become feasible.)
In 1671 the Royal Society asked for a demonstration of his reflecting telescope. Their interest encouraged him to publish his notes On Color, which he later expanded into his Opticks.
When Robert Hooke criticized some of Newton's ideas, Newton was so offended that he withdrew from public debate. The two men remained enemies until Hooke's death.
In one experiment, to prove that color perception is caused by pressure on the eye, Newton slid a darning needle around the side of his eye until he could poke at its rear side, dispassionately noting "white, darke & colored circles" so long as he kept stirring with "ye bodkin."
Newton argued that light is composed of particles, but he had to associate them with waves to explain the diffraction of light (Opticks Bk. II, Props. XII-XX).
Later physicists instead favored a purely wavelike explanation of light to account for diffraction.
Today's quantum mechanics restores the idea of "wave-particle duality", although photons bear very little resemblance to Newton's corpuscles (e.g., corpuscles refracted by accelerating toward the denser medium).
Newton is believed to have been the first to explain precisely the formation of the rainbow from water droplets dispersed in the atmosphere in a rain shower.
Influence of the Hermetic Tradition
In his Hypothesis of Light of 1675, Newton posited the existence of the ether to transmit forces between particles. Newton was in contact with Henry More, the Cambridge Platonist who was born in Grantham, on alchemy, and now his interest in the subject revived.
During a period of isolation, Newton was greatly influenced by the Hermetic tradition with which he had been familiar since his undergraduate days.
Newton, always somewhat interested in alchemy, now immersed himself in it, copying by hand treatise after treatise and collating them to interpret their arcane imagery. Under the influence of the Hermetic tradition, his conception of nature underwent a decisive change.
Until that time, Newton had been a mechanical philosopher in the standard 17th-century style, explaining natural phenomena by the motions of particles of matter. Thus, he held that the physical reality of light is a stream of tiny corpuscles diverted from its course by the presence of denser or rarer media. He felt that the apparent attraction of tiny bits of paper to a piece of glass that has been rubbed with cloth results from an ethereal effluvium that streams out of the glass and carries the bits of paper back with it.
This mechanical philosophy denied the possibility of action at a distance; as with static electricity, it explained apparent attractions away by means of invisible ethereal mechanisms.
Newton's Hypothesis of Light of 1675, with its universal ether, was a standard mechanical system of nature. Some phenomena, such as the capacity of chemicals to react only with certain others, puzzled him, however, and he spoke of a "secret principle" by which substances are "sociable" or "unsociable" with others.
About 1679, Newton abandoned the ether and its invisible mechanisms and began to ascribe the puzzling phenomena - chemical affinities, the generation of heat in chemical reactions, surface tension in fluids, capillary action, the cohesion of bodies, and the like, to attractions and repulsions between particles of matter.
More than 35 years later, in the second English edition of the Opticks, Newton accepted an ether again, although it was an ether that embodied the concept of action at a distance by positing a repulsion between its particles. The attractions and repulsions of Newton's speculations were direct transpositions of the occult sympathies and antipathies of Hermetic philosophy--as mechanical philosophers never ceased to protest.
Newton, however, regarded them as a modification of the mechanical philosophy that rendered it subject to exact mathematical treatment. As he conceived of them, attractions were quantitatively defined, and they offered a bridge to unite the two basic themes of 17th-century science--the mechanical tradition, which had dealt primarily with verbal mechanical imagery, and the Pythagorean tradition, which insisted on the mathematical nature of reality. Newton's reconciliation through the concept of force was his ultimate contribution to science.
John Maynard Keynes, who acquired many of Newton's writings on alchemy, stated that "Newton was not the first of the age of reason: he was the last of the magicians."
Newton's interest in alchemy cannot be isolated from his contributions to science. He lived at a time when there was no clear distinction between alchemy and science. Had he not relied on the occult idea of action at a distance, across a vacuum, he might not have developed his 'theory of gravity.'
In 1704 Newton wrote Opticks, in which he expounded his corpuscular theory of light. He considered light to be made up of extremely subtle corpuscles, that ordinary matter was made of grosser corpuscles and speculated that through a kind of alchemical transmutation "Are not gross Bodies and Light convertible into one another,...and may not Bodies receive much of their Activity from the Particles of Light which enter their Composition?" Newton also constructed a primitive form of a frictional electrostatic generator, using a glass globe (Optics, 8th Query). Controversy
Among the most important dissenters to Newton's paper was Robert Hooke, one of the leaders of the Royal Society who considered himself the master in optics and hence he wrote a condescending critique of the unknown parvenu. One can understand how the critique would have annoyed a normal man. The flaming rage it provoked, with the desire publicly to humiliate Hooke, however, bespoke the abnormal. Newton was unable rationally to confront criticism. Less than a year after submitting the paper, he was so unsettled by the give and take of honest discussion that he began to cut his ties, and he withdrew into virtual isolation.
In 1675, during a visit to London, Newton thought he heard Hooke accept his theory of colors. He was emboldened to bring forth a second paper, an examination of the colour phenomena in thin films, which was identical to most of Book Two as it later appeared in the Opticks.
The purpose of the paper was to explain the colors of solid bodies by showing how light can be analyzed into its components by reflection as well as refraction. His explanation of the colors of bodies has not survived, but the paper was significant in demonstrating for the first time the existence of periodic optical phenomena.
He discovered the concentric coloured rings in the thin film of air between a lens and a flat sheet of glass; the distance between these concentric rings (Newton's rings) depends on the increasing thickness of the film of air. In 1704 Newton combined a revision of his optical lectures with the paper of 1675 and a small amount of additional material in his Opticks.
A second piece which Newton had sent with the paper of 1675 provoked new controversy. Entitled "An Hypothesis Explaining the Properties of Light," it was in fact a general system of nature. Hooke apparently claimed that Newton had stolen its content from him, and Newton boiled over again. The issue was quickly controlled, however, by an exchange of formal, excessively polite letters that fail to conceal the complete lack of warmth between the men.
Newton was also engaged in another exchange on his theory of colors with a circle of English Jesuits in Liège, perhaps the most revealing exchange of all. Although their objections were shallow, their contention that his experiments were mistaken lashed him into a fury. The correspondence dragged on until 1678, when a final shriek of rage from Newton, apparently accompanied by a complete nervous breakdown, was followed by silence. The death of his mother the following year completed his isolation. For six years he withdrew from intellectual commerce except when others initiated a correspondence, which he always broke off as quickly as possible.
Gravity and Motion
In 1679, Newton returned to his work on mechanics, i.e., gravitation and its effect on the orbits of planets, with reference to Kepler's laws of motion, and consulting with Hooke and Flamsteed on the subject. He published his results in De Motu Corporum (1684). This contained the beginnings of the laws of motion that would inform the Principia.
The Philosophiae Naturalis Principia Mathematica (now known as the Principia) was published on 5 July 16871 with encouragement and financial help from Edmond Halley.
In this work Newton stated the three universal laws of motion that were not to be improved upon for more than two hundred years. He used the Latin word gravitas (weight) for the force that would become known as gravity, and defined the law of universal gravitation. In the same work he presented the first analytical determination, based on Boyle's law, of the speed of sound in air.
With the Principia, Newton became internationally recognised. He acquired a circle of admirers, including the Swiss-born mathematician Nicolas Fatio de Duillier, with whom he formed an intense relationship that lasted until 1693. The end of this friendship led Newton to a nervous breakdown.
Later Life
In the 1690s Newton wrote a number of religious tracts dealing with the literal interpretation of the Bible. Henry More's belief in the infinity of the universe and rejection of Cartesian dualism may have influenced Newton's religious ideas. A manuscript he sent to John Locke in which he disputed the existence of the Trinity was never published.
Later works - The Chronology of Ancient Kingdoms Amended (1728) and Observations Upon the Prophecies of Daniel and the Apocalypse of St. John (1733) - were published after his death.
He also devoted a great deal of time to alchemy.
Newton was also a member of the Parliament of England from 1689 to 1690 and in 1701, but his only recorded comments were to complain about a cold draft in the chamber and request that the window be closed.
Newton moved to London to take up the post of warden of the Royal Mint in 1696, a position that he had obtained through the patronage of Charles Montagu, 1st Earl of Halifax, then Chancellor of the Exchequer. He took charge of England's great recoining, somewhat treading on the toes of Master Lucas (and finagling Edmond Halley into the job of deputy comptroller of the temporary Chester branch). Newton became perhaps the best-known Master of the Mint upon Lucas' death in 1699, a position Newton held until his death. These appointments were intended as sinecures, but Newton took them seriously, retiring from his Cambridge duties in 1701, and exercising his power to reform the currency and punish clippers and counterfeiters.
As Master of the Mint Newton unofficially moved the Pound Sterling to the gold standard from silver in 1717; great reforms at the time and adding considerably to the wealth and stability of England. It was his work at the Mint, rather than his earlier contributions to science, that earned him a knighthood from Queen Anne in 1705.
Newton was made President of the Royal Society in 1703 and an associate of the French Académie des Sciences. In his position at the Royal Society, Newton made an enemy of John Flamsteed, the Astronomer Royal, by prematurely publishing Flamsteed's star catalogue.
Newton died in London on March 20th, 1727, and was buried in Westminster Abbey. His half-niece, Catherine Barton Conduitt, served as his hostess in social affairs at his house on Jermyn Street in London; he was her "very loving Uncle", according to his letter to her when she was recovering from smallpox. Newton died intestate and his considerable estate was divided between his half-nieces and half-nephews.
After his death, Newton's body was discovered to have had massive amounts of mercury in it, probably resulting from his alchemical pursuits. Mercury poisoning could explain Newton's eccentricity in late life.
Religious and Occult Studies
The law of gravity became Newton's best-known discovery. He warned against using it to view the universe as a mere machine, like a great clock. He said, "Gravity explains the motions of the planets, but it cannot explain who set the planets in motion. God governs all things and knows all that is or can be done."
His scientific fame notwithstanding, Newton's study of the Bible and of the early Church Fathers were among his greatest passions. He devoted more time to the study of the Scriptures, the Fathers, and to Alchemy than to science, and said, "I have a fundamental belief in the Bible as the Word of God, written by those who were inspired. I study the Bible daily."
Newton himself wrote works on textual criticism, most notably An Historical Account of Two Notable Corruptions of Scripture.
Newton also placed the crucifixion of Jesus Christ at 3 April, AD 33, which is now the accepted traditional date. He also attempted, unsuccessfully, to find hidden messages within the Bible.
Despite his focus on theology and alchemy, Newton tested and investigated these ideas with the scientific method, observing, hypothesising, and testing his theories. To Newton, his scientific and religious experiments were one and the same, observing and understanding how the world functioned.
Newton rejected the church's doctrine of the trinity, and was probably a follower of arianism. In a minority view, T.C. Pfizenmaier argues that he more likely held the Eastern Orthodox view of the Trinity rather than the Western one held by Roman Catholics, Anglicans, and most Protestants.
In his own day, he was also accused of being a Rosicrucian (as were many in the Royal Society and in the court of Charles II).
In his own lifetime, Newton wrote more on religion than he did on natural science. He believed in a rationally immanent world, but he rejected the hylozoism implicit in Leibniz and Baruch Spinoza. Thus, the ordered and dynamically informed universe could be understood, and must be understood, by an active reason, but this universe, to be perfect and ordained, had to be regular.
Newton and Robert Boyle's mechanical philosophy was promoted by rationalist pamphleteers as a viable alternative to the pantheists and enthusiasts, and was accepted hesitantly by orthodox preachers as well as dissident preachers like the latitudinarians.
Thus, the clarity and simplicity of science was seen as a way to combat the emotional and metaphysical superlatives of both superstitious enthusiasm and the threat of atheism, and, at the same time, the second wave of English deists used Newton's discoveries to demonstrate the possibility of a "Natural Religion."
The attacks made against pre-Enlightenment "magical thinking," and the mystical elements of Christianity, were given their foundation with Boyle¹s mechanical conception of the universe. Newton gave Boyle¹s ideas their completion through mathematical proofs, and more importantly was very successful in popularising them.
The perceived ability of Newtonians to explain the world, both physical and social, through logical calculations alone is the crucial idea in the disenchantment of Christianity.
Newton saw God as the master creator whose existence could not be denied in the face of the grandeur of all creation.
But the unforeseen theological consequence of his conception of God, as Leibniz pointed out, was that God was now entirely removed from the world¹s affairs, since the need for intervention would only evidence some imperfection in God¹s creation, something impossible for a perfect and omnipotent creator.
Leibniz's theodicy cleared God from the responsibility for "l'origine du mal" by making God removed from participation in his creation. The understanding of the world was now brought down to the level of simple human reason, and humans, as Odo Marquard argued, became responsible for the correction and elimination of evil.
On the other hand, latitudinarian and Newtonian ideas taken too far resulted in the millenarians, a religious faction dedicated to the concept of a mechanical universe, but finding in it the same enthusiasm and mysticism that the Enlightenment had fought so hard to extinguish.
Post a Comment
0 Comments:
Post a Comment